没有什么推导过程,圆周率就是这么定义的。或者说,这是个大家都承认的事实(公理),你要是实在不相信,好像也没有什么方法证明这个事情。(如果你不相信1+1=2,也没法证明给你看1+1=2)
在古代,这个问题几乎是依赖于对实验的归纳。人们在经验中发现圆的周长与直径有着一个常数的比,并把这个常数叫做圆周率(西方记做π)。于是自然地,圆周长就是:C = π * d 或者C=2*π*r(其中d是圆的直径,r是圆的半径)。
割圆术的大致方法在中学的数学教材上就有。然而必须看到,它很大程度上只是计算圆周率的方法,而圆周长是C = π * d似乎已经是事实了,这一方法仅仅是定出π的值来。仔细想想就知道这样做有问题,因为他们并没有从逻辑上证明圆的周长确实正比于直径,更进一步说他们甚至对周长的概念也仅是直观上的、非理性的。
如果一定要你写推导过程
你可以用微积分相关的内容退出圆周长的公式,可是三角函数等等本来就建立在圆的周长、半径以及π的基础上,循环论证其实也站不住脚。